Arrays of nano-liter photobioreactors to accelerate algal biofuel development

A team led by Arum Han, associate professor in the Department of Electrical and Computer Engineering at Texas A&M University, is developing microfluidic lab-on-a-chip systems that can be used as high-throughput screening tools to quickly evaluate the growth and oil production characteristics of numerous algal strains under various growth conditions.

The developed microsystem utilizes microfluidic technologies to individually control light conditions (intensity and day-night cycle) for each of the 10s or 100s of photobioreactors, and was used to understand how microalgae grow and produce oil under different environment. The article also was featured as a Lab on a Chip HOT article.

Using these microsystems, Han and his collaborators in Biochemistry and Biophysics at Texas A&M, Dr. Tim Devarenne, and in the Boyce Thompson Institute for Plant Research at Cornell University, Dr. David Stern, are working together to transfer the valuable hydrocarbon synthesis pathway of the slow-growing alga, Botryococcus braunii, to faster-growing algae with commercial potential through metabolic engineering. This multidisciplinary team is currently funded under a two million dollar award from the National Science Foundation’s (NSF) Emerging Frontiers in Research and Innovation (EFRI) office. With the new microsystem technology, the team is expected to significantly shorten the development time, where testing that previously required up to a year in a standard laboratory environment can be achieved in a week.

The paper can be found here

Source: ATM